Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 14: 1050037, 2023.
Article in English | MEDLINE | ID: covidwho-2259552

ABSTRACT

Pre-vaccination SARS-CoV-2 infection can boost protection elicited by COVID-19 vaccination and post-vaccination breakthrough SARS-CoV-2 infection can boost existing immunity conferred by COVID-19 vaccination. Such 'hybrid immunity' is effective against SARS-CoV-2 variants. In order to understand 'hybrid immunity' at the molecular level we studied the complementarity determining regions (CDR) of anti-RBD (receptor binding domain) antibodies isolated from individuals with 'hybrid immunity' as well as from 'naive' (not SARS-CoV-2 infected) vaccinated individuals. CDR analysis was done by liquid chromatography/mass spectrometry-mass spectrometry. Principal component analysis and partial least square differential analysis showed that COVID-19 vaccinated people share CDR profiles and that pre-vaccination SARS-CoV-2 infection or breakthrough infection further shape the CDR profile, with a CDR profile in hybrid immunity that clustered away from the CDR profile in vaccinated people without infection. Thus, our results show a CDR profile in hybrid immunity that is distinct from the vaccination-induced CDR profile.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Complementarity Determining Regions/genetics , COVID-19 Vaccines
2.
Autoimmunity reviews ; 2023.
Article in English | EuropePMC | ID: covidwho-2228274

ABSTRACT

A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.

3.
Autoimmun Rev ; 22(4): 103288, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2220460

ABSTRACT

A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.


Subject(s)
Autoimmune Diseases , COVID-19 , Neoplasms , Scleroderma, Systemic , Humans , Autoantibodies/analysis , Antibodies, Antinuclear , Autoantigens , Cyclin-Dependent Kinase 9 , Nuclear Proteins , Cell Cycle Proteins , Guanine Nucleotide Exchange Factors , ATPases Associated with Diverse Cellular Activities
4.
Cell Rep ; 42(1): 112014, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2177165

ABSTRACT

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Ethnicity , Epitopes , Antibodies, Viral , Antibodies, Neutralizing , Neutralization Tests
5.
Small Methods ; 7(3): e2201477, 2023 03.
Article in English | MEDLINE | ID: covidwho-2173462

ABSTRACT

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.


Subject(s)
COVID-19 , Microfluidics , Humans , Microfluidics/methods , SARS-CoV-2 , Antibodies , Saccharomyces cerevisiae/genetics
6.
iScience ; 25(8): 104705, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1914523

ABSTRACT

Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent patient with COVID-19, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 D614G, beta, gamma, and delta infection in vitro, with three mAbs neutralizing omicron as well. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta, and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 µg/mL, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.

7.
Viruses ; 14(6)2022 06 09.
Article in English | MEDLINE | ID: covidwho-1884392

ABSTRACT

To mitigate the massive COVID-19 burden caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several vaccination campaigns were initiated. We performed a single-center observational trial to monitor the mid- (3 months) and long-term (10 months) adaptive immune response and to document breakthrough infections (BTI) in healthcare workers (n = 84) upon BNT162b2 vaccination in a real-world setting. Firstly, serology was determined through immunoassays. Secondly, antibody functionality was analyzed via in vitro binding inhibition and pseudovirus neutralization and circulating receptor-binding domain (RBD)-specific B cells were assessed. Moreover, the induction of SARS-CoV-2-specific T cells was investigated by an interferon-γ release assay combined with flowcytometric profiling of activated CD4+ and CD8+ T cells. Within individuals that did not experience BTI (n = 62), vaccine-induced humoral and cellular immune responses were not correlated. Interestingly, waning over time was more pronounced within humoral compared to cellular immunity. In particular, 45 of these 62 subjects no longer displayed functional neutralization against the delta variant of concern (VoC) at long-term follow-up. Noteworthily, we reported a high incidence of symptomatic BTI cases (17.11%) caused by alpha and delta VoCs, although vaccine-induced immunity was only slightly reduced compared to subjects without BTI at mid-term follow-up.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Belgium , CD8-Positive T-Lymphocytes , COVID-19/epidemiology , COVID-19/prevention & control , Disease Progression , Follow-Up Studies , Health Personnel , Humans , Immunity, Cellular , Immunity, Humoral , Incidence , SARS-CoV-2/genetics , Vaccination
8.
ACS Sens ; 7(2): 477-487, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1641831

ABSTRACT

The ongoing COVID-19 pandemic has emphasized the urgent need for rapid, accurate, and large-scale diagnostic tools. Next to this, the significance of serological tests (i.e., detection of SARS-CoV-2 antibodies) also became apparent for studying patients' immune status and past viral infection. In this work, we present a novel approach for not only measuring antibody levels but also profiling of binding kinetics of the complete polyclonal antibody response against the receptor binding domain (RBD) of SARS-CoV-2 spike protein, an aspect not possible to achieve with traditional serological tests. This fiber optic surface plasmon resonance (FO-SPR)-based label-free method was successfully accomplished in COVID-19 patient serum and, for the first time, directly in undiluted whole blood, omitting the need for any sample preparation. Notably, this bioassay (1) was on par with FO-SPR sandwich bioassays (traditionally regarded as more sensitive) in distinguishing COVID-19 from control samples, irrespective of the type of sample matrix, and (2) had a significantly shorter time-to-result of only 30 min compared to >1 or 4 h for the FO-SPR sandwich bioassay and the conventional ELISA, respectively. Finally, the label-free approach revealed that no direct correlation was present between antibody levels and their kinetic profiling in different COVID-19 patients, as another evidence to support previous hypothesis that antibody-binding kinetics against the antigen in patient blood might play a role in the COVID-19 severity. Taking all this into account, the presented work positions the FO-SPR technology at the forefront of other COVID-19 serological tests, with a huge potential toward other applications in need for quantification and kinetic profiling of antibodies.


Subject(s)
COVID-19 , Surface Plasmon Resonance , Antibodies, Viral , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL